Garrard

Service information for Model MRM101
 Music Recovery Module

Index

Introduction	page
Connections	2
Operation	2
Spare parts list	3
Circuit diagram	4
Dismantling	7
Test procedures	12

Details of authorised Garrard service centres are available on request.

Model MRM101 Music Recovery Module

Introduction

The Music Recovery Module (referred to as MRM) is designed to remove the objectionable noises heard when a phono pickup meets a scratch on the record being played.
The MRM is not intended to remove all noises associated with old, worn or generally dirty records. Since these noises occur in an almost continuous manner, their detection could lead to the removal of a substantial proportion of the original recording.
The MRM contains a high quality stereo pre-amplifier with magnetic phono inputs. This allows the MRM to be simply and directly connected to the amplifier 'auxiliary' or 'tuner' inputs. The scratch detection circuit recognises the whole waveform of
the scratch and distinguishes it from the peaks of the recorded music. In order to allow the scratch detection circuit sufficient time to make the decision to remove the scratch, the channels are individually delayed by a few milli-seconds without limiting the audio frequency range.
After recognising the scratch, a specially designed network isolates the signal for sufficient time for the scratch noise to pass out of the delay line.
Patents applied for.
WARNING: To prevent fire or shock hazard, do not expose this appliance to rain or moisture.

Nominal output

300 mV RMS
Output
For 1% T.H.D. at 1 kHz :
Suppressor 'in' 2.5 V rms.
Suppressor 'out' 8 V rms.
Output impedance
3.3 k ohm.

Rated load impedance
Greater than 10 k ohm (short circuit protected).
Power supply
$120 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz} 7 \mathrm{VA}$, or $220 / 240 \mathrm{~V}, \mathrm{AC} 50 / 60 \mathrm{~Hz} 7 \mathrm{VA}$.
Dimensions
$378 \mathrm{~mm} \times 298 \mathrm{~mm} \times 71 \mathrm{~mm}(\mathrm{~W} \times \mathrm{D} \times \mathrm{H})$.
Shipping weight
3.7 kg (8.36 lb).

Or, in U.S.A.:
Plessey Consumer Products,
Garrard Dealer Sales Division,
100 Commercial Street,
Plainview, New York 11803.
Telephone: (516) 938-8900

Connections at the rear panel

Connections at the rear panel of the MRM are both RCA and DIN type input and RCA type output sockets to provide the facility to link up to any equipment likely to be used with it. European versions also have a DIN type output socket.
The RCA connectors are identified L (left) and R (right), so that a signal into the R connector appears after processing on the R output connector.
For convenience, the pickup input and the amplifier output connections are placed at either side of the signal earth (\ddagger) terminal respectively.
It may be found advantageous to connect a lead between the amplifier or record player and the MRM signal earth terminals, to minimise hum.

Audio connecting leads (U.K. and Europe)

The MRM is supplied with an audio connecting lead specially wired with a 5 -pin DIN type plug at one end and RCA type

Connecting to the power supply

The power supply lead enters at the right hand side of the rear panel.
important: Before connecting to the power supply ensure by the voltage instruction label on the back panel that the MRM is suitable for the supply voltage.

1. United Kingdom only. A power supply plug is not fitted and as the colours of the wires in the mains lead of the MRM may not correspond to the colours identitying the terminals in your power supply plug proceed as follows:
The BROWN wire must be connected to the terminal in the plug marked 'L' or coloured red.
The BLUE wire must be connected to the terminal in the plug marked ' N ' or coloured black.
A separate earth wire is not required.
If a 13 amp (BS1363) plug is used, fit a 3 amp or 5 amp fuse. For any other type of plug protect with a 5 amp fuse or fuse wire in the adaptor or distributor board.
2. Europe and U.S.A. A suitable 2 pin plug is provided for connection to the power supply.
phono plugs at the other. (Part No. 606/7/79486/001.)
MRM Input: Transfer the amplifier end of the signal lead between the record player and the amplifier to the MRM, using, as appropriate, the DIN input socket or the RCA phono input sockets, observing the R and L channel identification markings.
MRM Output: Connection to the amplifier from the MRM will be to the following colour coding:
Black or Brown plug (RCA) - Socket R (right)
White or Grey plug (RCA) - Socket L (left)
If the amplifier has a 5 -way DIN input socket:
3. Attach the 5 pin DIN type plug on the Garrard audio connection lead to this.
4. Attach the RCA type phono plugs on the other end of the lead to the appropriate output sockets on the MRM, observing the R and L channel identification markings. If the amplifier has RCA type phono input sockets:
5. Attach the phono plugs on the Garrard audio connection
lead to these, observing the R and L channel identification markings.
6. Attach the 5 pin DIN type plug on the other end of the lead to the MRM DIN output socket.

Audio connecting leads (U.S.A.)

The MRM is supplied with a phono connecting lead which has RCA type plugs at each end. (Part No. 606/7/79488/001.) Connection to the amplifier from the MRM will be to the following colour coding:
Black or Brown plug (RCA) - Socket R (right)
White or Grey plug (RCA) - Socket L (left)
If the amplifier has DIN type sockets attach a 5 -pin DIN plug. The other ends of either type of leads are connected to the MRM as previously stated, and as shown in the following diagram.

Diagram 1 Connecting leads

Operation

Operating controls

The power supply On/Off switch is at the left side of the fascia panel with an adjacent red indicator light. To avoid switch-on clicks it is advised either that the MRM is switched on before the amplifier or that the amplifier volume controls are at minimum when the MRM is switched on.
At the right-hand side of the front panel is the suppressor switch which activates the scratch suppression circuit, with an associated indicator light to show that the network is in operation when the control is switched in.
The large central control knob provides the adjustment for the sensitivity at which the scratch suppression operates.
Turning the control clockwise causes the unit to be triggered by small scratches (maximum sensitivity). Turning the control
counterclockwise progressively increases the scratch amplitude necessary before triggering occurs.
Triggering of the unit is indicated by the suppressor activity light which flashes when a scratch is detected. The user may therefore choose the level at which suppression occurs in order to obtain the best subjective improvement.

Adjusting the controls

With the connections made as previously stated, and a scratched record playing adjustment is then made. Starting with the sensitivity control turned fully counterclockwise and the suppressor switched out, rotate the sensitivity control clockwise until the suppressor activity light commences flashing in synchronism with the scratch to be suppressed. Switch the suppressor circuit in.

Spare Parts List

(For identification see diagrams 2-6)

Ref. No.	Garrard Part No.	Description	Ref. No.	Garrard Part No.	Description
1	702/4/26585/001	'Heyco' strain relief bush - U.K. and	26	999/4/31037/001	'Rokut' rivet (5)
		Europe	27	419/7/41485/001	Main P.C.E. - U.K. and Europe
	702/4/26564/001	'Heyco' strain relief bush - U.S.A.		419/7/41485/002	Main P.C.B. - U.S.A.
2	998/4/70277/006	Mains lead - U.K.	28	612/7/41333/001	Fascia panel
	702/7/26572/001	Mains lead with Europlug - Europe	29	612/7/41327/001	Fascia panel spacer (3)
	606/4/73278/001	Line cord - U.S.A.	30	408/7/51889/001	Power supply switch - SW1
3	612/7/41332/001	Chassis label - U.K. and Europe	31	518/4/90640/007.	Fuse 100mAT - FS1
	612/7/41332/002	Chassis label - U.S.A.	32	612/7/41322/001	Wiring loom, with power supply socket
4	612/7/41302/001	Chassis plate			SK5
5	508/4/22429/001	Phono socket (4)	33	612/7/41338/001	Pillar (3)
6	703/4/06094/001	Earthing (grounding) terminal	34	999/4/01911/006	Nut, M5 (6)
7	508/4/22430/001	5 pin DIN socket - UK. and Europe (2)	35	999/4/00852/019	Shakeproof washer, M5 (3)
	508/4/22430/001	5 pin DIN socket - U.S.A. (1)	36	405/7/17125/005	Power supply transformer - TR1 - U.K. and
8	991/4/02076/097	Screw - U.K. and Europe (4)			Europe
	991/4/02076/097	Screw-U.S.A. (2)		405/7/17125/006	Power supply transformer - TR1-U.S.A.
9	999/4/00852/008	Shakeproof washer - U.K. and Europe (4)	37	612/7/41337/001	Transformer plate
	999/4/00852/008	Shakeproof washer-U.S.A. (2)	38	999/4/31023/004	Nylon washer, M3 (8)
10	991/4/01914/004	Nut - U.K. and Europe (4)	39	612/7/41303/002	Cabinet - 'black sand' finish
	997/4/01914/004	Nut - U.S.A. (2)		612/7/41303/003	Cabinet - 'walnut' finish
11	612/7/41306/001	Wiring loom, with input socker SK1	40	991/4/02000/037	Crinkle washer (2)
12	612/7/41317/001	Wiring loom, with output socket SK2	41	999/4/31048/001	Screw, M3 (2)
13	419/7/41487/002	Sub-P.C.B.	42	606/7/80077/001	Isolator foo: (4)
14	612/7/41323/001	Fader assembly, complete	43	606/2/80078/001	Isolator bush (4)
	612/7/41301/001	Fader housing (2)	44	999/4/01145/026	Screw (4)
15	991/4/02018/099	Screw, M3	45	606/7/79486/001	Audio connecting lead (phono/DIN plug) -
	991/4/01726/005	Nut, M3 (not shown)			U.K. and Europe
16	998/4/83976/001	Light-proof tape, $5 \times 260 \mathrm{~mm}$		606/7/79488/001	Audio connecting lead (phono/phono
17	612/7/41318/001	Wiring loom, with function control socket SK3			plugs)-U.S.A.
18	612/7/41321/001	Wiring loom, with sensitivity control socket SK4		celtaneous parts (not	ustrated
19	404/7/08179/001	Sensitivity control - VR3			
20	520/4/95012/001	Lamp mounting bush, with collar (3)		612/7/41313/001	Packing canon
21	408/7/51890/001	Suppressor switch - SW2		612/7/41334/001	Polystyrene packing piece (2)
22	520/4/95006/001	Indicator lamp, diffused red - LED 1 and 3 (2)		$\begin{aligned} & 612 / 7 / 41335 / 001 \\ & 612 / 7 / 41312 / 001 \end{aligned}$	Cardboard packing piece (2) Customer's instruction leaflet - U.K. and
23	612/7/41320/001	Control knob. small (2)			Europe
24	612/7/41319/001	Control knob, large		612/7/41312/002	Customer's instruction leaflet - U.S.A.
25	520/4/95007/001	Indicator lamp, clear red - LED 2			Signal ground connecting lead

Printed Circuit Board Components

Reference numbers are those used on diagrams 10, 11 and 12. Components without a 'Garrard Part Number' are proprietary items and should be obtained locally.

Diagram 4 View inside front panel

Diagram 5 Cabinet fixing

Diagram 6 Audio connecting leads

Diagram 7 Potentiometer and switch fixing

Diagram 8 Indicator lamp fixing

Diagram 9 Removal of 'Rokut' rivet

Diagram 10 Circuit diagram

Diagram 11 Main P.C.B. layout

Spare Parts (continued)

Ref. Garrard

No. Part Number
Description

		Capaci			
C101		10p	500 V	$\pm 10 \%$	Ceramic
C102	435/4/91010/125	$470 n$	100 V	$\pm 10 \%$	Polycarbonate
C103	402/4/56425/223	22μ	25 V	$\pm 20 \%$	Tantalum
C104		8 n 2	63 V	$\pm 21 / 2 \%$	Polystyrene
C105		470p	500 V	$\pm 20 \%$	Ceramic
C106	435/4/91010/023	$220 n$	100 V	$\pm 5 \%$	Polycarbonate
C107		7μ	63 V	+75\%-10\%	Electrolytic
C108		1μ	63 V	+75\%-10\%	Electrolytic
C109		680p	500 V	$\pm 20 \%$	Ceramic
C110		100 n	100 V	$\pm 5 \%$	Polycarbonate
C111		68p	500 V	$\pm 10 \%$	Ceramic
C112		22p	500 V	$\pm 10 \%$	Ceramic
C113	435/4/91010/024	330 n	100 V	$\pm 5 \%$	Polycarbonate
C114		1 n 5	63 V	$\pm 21 / 2 \%$	Polystyrene
C115	402/4/56423/043	2200μ	40 V	+ $50 \%-10 \%$	Electrolytic
C116	435/4/91010/125	470 n	100 V	$\pm 10 \%$	Polycarbonate
C117	435/4/91010/021	100 n	100 V	$\pm 5 \%$	Polycarbonate
C118	435/4/91010/12	470μ	25 V	+50\%-10\%	Electrolytic
C120		470 n	100 V	$\pm 10 \%$	Polycarbonate
C121		220p	63 V	$\pm 1 \%$	Polystyrene
C122		22p	500 V	$\pm 10 \%$	Ceramic
C123		10n	500 V	$\pm 10 \%$ $+40 \%-20 \%$	Ceramic
C124		10 n	500 V	$+40 \%-20 \%$ $+40 \%-20 \%$	Ceramic
C125		10 n	500 V	+40\%-20\%	Ceramic Ceramic
C126		220μ	25 V	+50\% - 10%	Electrolytic
C127		10 n	500 V	+40\% - 20%	Ceramic
C128 C 129		$10 n$	500 V	+40\%-20\%	Ceramic
C129 C130 C150		10 n	500 V	+40\%-20\%	Ceramic
C130		220μ	25 V	+50\%-10\%	Electrolytic
C151	437/4/30727/011	10 n	250 V	$\pm 5 \%$	Polycarbonate
C151 C152	437/4/30727/011	10 n	250 V	$\pm 5 \%$	Polycarbonate
C153	437/4/30727/021	100 n	100 V	$\pm 5 \%$	Polycarbonate
C154	435/4/91010/103	2 n 2	250 V	$\pm 10 \%$	Polycarbonate
	437/4/30727/025	0.47μ	100 V	$\pm 5 \%$	Polycarbonate
C156	$435 / 4 / 91010 / 112$ $437 / 4 / 30727 / 015$	$15 n$	250 V	$\pm 10 \%$	Polycarbonate
C157	437/4/30727/015	$47 n$	250 V	$\pm 5 \%$	Polycarbonate
C158	437/4/30727/013	22 n	250 V	$\pm 5 \%$	Polycarbonate
C159	437/4/30727/015	15n	250 V	$\pm 10 \%$	Polycarbonate
C160	437/4/30727/013	22n	250V	$\pm 5 \%$	Polycarbonate
C161		470μ	25 V	$\pm 5 \%$ $+50 \%-10 \%$	Polycarbonate
C162	437/4/30727/011	10 n	250 V	$+50 \%-10 \%$ $\pm 5 \%$	Electrolytic
C163	437/4/30727/011	10 n	250 V	$\pm 5 \%$	Polycarbonate
C164	437/4/30727/011	10 n	250 V	$\pm 5 \%$ $\pm 5 \%$	Polycarbonate
C165	437/4/30727/021	100n	100 V	\pm	Polycarbonate Polycarbonate
C166	402/4/56425/216	$6 \mu 8$	25 V	$\pm 20 \%$	Polycarbonate Tantalum
C167	402/4/56425/261	1μ	35 V	$\pm 20 \%$	Tantalum
C168	437/4/30727/025	0.47μ	100 V	$\pm 5 \%$	Polycarbonate
C169	437/4/30727/025	0.47 μ	100 V	$\pm 5 \%$	Polycarbonate
C170 C171	437/4/30727/021	100 n	100 V	$\pm 5 \%$	Polycarbonate
C172	437/4/30727/021	100 n	100V	$\pm 5 \%$	Polycarbonate
C173		10 n	500 V	+40\%-20\%	Ceramic .
C174		10 n	500 V	+40\% - 20%	Ceramic
C175		10 n	500 V	+40\% - 20%	Ceramic
C200		10 n	500 V	+40\% - 20%	Ceramic
C201		220~	25 V	+50\%-10\%	Electrolytic
C202	435/4/91010/125	10p 470 n	500 V	$\pm 10 \%$	Ceramic
C203	402/4/56425/223	22μ	25 V	$\pm 10 \%$	Polycarbonate
C204		8 n 2	$63 \mathrm{~V}$	$\pm 10 \%$ $\pm 21 / 2 \%$	Tantalum
C205		470p	500 V	$\begin{aligned} & \pm 21 / 2 \% \\ & \pm 20 \% \end{aligned}$	Polystyrene Ceramic
C206	435/4/91010/023	$220 n$	100 V		
C207		1H	63 V	$\begin{aligned} & \pm 5 \% \\ & +75 \%-10 \% \end{aligned}$	Polycarbonate
C208		1μ	63 V	$+75 \%-10 \%$ $+75 \%-10 \%$	Electrolytic
C209		680p	500 V	$+75 \%-10 \%$ $\pm 20 \%$	Electrolytic
C210	435/4/91010/021	100 n	100 V	$\begin{aligned} & \pm 20 \% \\ & \pm 5 \% \end{aligned}$	Ceramic
C211		68p	500 V	$\begin{aligned} & \pm 5 \% \\ & \pm 10 \% \end{aligned}$	Polycarbonate Ceramic
C212 C 213		22p	500 V		
C213 C214	435/4/91010/024	330n	100 V	$\begin{aligned} & \pm 10 \% \\ & \pm 5 \% \end{aligned}$	Ceramic
C214		1 n 5	63 V	$\pm 5 \%$ $\pm 21 / \%$	Polycarbonate
C215	402/4/56423/043	2200~	40 V		Polystyrene
C216	435/4/91010/125	470n	100 V	$+50 \%-10 \%$ $\pm 10 \%$	Electrolytic
C217	435/4/91010/021	100n	100 V	$\pm 5 \%$	Polycarbonate Polycarbonate

To remove the chassis from the cabinet

1. Turn the power switch to 'Off' and disconnect the module from its power supply. Unplug any input, output or signal ground leads from their sockets at the back of the module. noting locations for reassembly.
2. Turn the module upside down, place it on a protective surface and remove four screws (44) from the isolator feet (42), being careful not to lose the associated bushes (43). Remove both remaining screws (41) and washers (40) from the bottom of the cabinet and turn the module the right way up again.
3. The chassis can now be withdrawn from the front of the cabinet, taking care not to damage the top of the transformer (36) in the process. Lift the front of the chassis to ease its rear flange out through the cabinet. Do not use force and take care to avoid tension on the power supply lead as the chassis emerges.
When refitting the chassis, ease the transformer and wiring looms under the front edge of the cabinet.

To remove the printed circuit board (P.C.B.) (27)

CAUTION: When handling the P.C.B., take care not to bend it.

1. Dismantle the chassis from the cabinet as already described.
2. Unplug all connectors from the P.C.B., noting their locations for reassembly.
3. Eight 'Rokut' rivets (26) or five rivets and three nuts - secure the P.C.B. to the chassis. Remove the rivets, by driving their central spigots upwards through the P.C.B. until they can be withdrawn from the top of the board. (A small screwdriver is a convenient tool.) Remove any remaining fixing nuts and washers from the bottom of the chassis. Finally, press the rivets up through the chassis to release the P.C.B.

Note: When refitting the P.C.B. check that all spacer washers (38) are in place. To refit the rivets, press them back down through the P.C.B. and chassis, then push the central spigots down until they are flush with the top of the domed rivet head.

To remove the power supply lead (2)

1. Dismantle the chassis from the cabinet as already described.
2. Unsolder the lead from the power switch terminals (30).
3. The lead is secured to the back of the chassis by means of a moulded 'Heyco' bush (1). To release the lead, compress the
top and bottom of the bush inside the chassis, using a pair of pliers, while pushing the bush out through the back of the chassis.

To remove the fascia panel (28)

1. Pull off the small power switch and suppressor control knobs (23) and the large suppressor sensitivity knob (24)
2. Take the nuts off the three control spindles and remove the fascia panel, taking care to retain the spacers (29) fitted between the panel and the chassis. Do not scratch the aluminium panel.

To dismantle the fader assembly (13)

1. Remove the chassis from the cabinet.
2. Take out the screw (15) securing the two black housings.
3. Unwind the black tape or release the black light-proof band from around the housings and lift off the top housing. The components are all now accessible.
It is most important for correct operation that the backs of the light dependent resistors and L.E.D's are all seated flat against their respective faces in the cavities in the bottom housing.

To remove an indicator lamp (L.E.D.) (22 or 25)

1. Dismantle the chassis from the cabinet.
2. Lever the collar off the mounting bush (20) - away from the chassis flange - and withdraw the lamp.
3. Carefully cut away both heat-shrink insulated sleeves and unsolder the lamp connections, noting which lead is nearer to the flat on the L.E.D. mounting flange.
4. When reassembling, insulate both connections again using replacement sleeves or P.V.C. tape. Press the lamp fully into the mounting bush, before refitting the collar.
To replace a mounting bush it will be necessary to take off the fascia panel, remove the collar and lamp and press the bush out through the front of the chassis flange.

To remove power supply switch, sensitivity control or suppressor switch

1. Dismantle the chassis from the cabinet and take off the fascia panel (28) - see previous paragraphs.
2. Unsolder the connecting leads, after noting their positions on the control terminals, and withdraw the control.
When reassembling note that all controls have spigots which must locate in corresponding holes in the chassis. Refit the three spacing washers behind the fascia panel.

Test Procedures

Instruments required

(a) Dual channel oscilloscope, with timebase accuracy better than 5% (preferably better than 3%).
(b) Toneburst generator, capable of a single cycle toneburst 1.6 kHz fundamental, 10 Hz repetition rate,
or Pulse generator, capable of generating a doublet pulse of $600 \mu \mathrm{~s}$ duration, 10 Hz repetition rate.
(c) Sinewave oscillator, producing $20 \mathrm{~Hz}, 1 \mathrm{kHz}$ and 20 kHz .
(d) $D C$ voltmeter, to measure $25 \mathrm{~V} \pm 2 \mathrm{~V}$.
(e) $A C$ millivoltmeter, to measure from 9 V rms to 20 mV rms, 20 Hz to 20 kHz , better than 0.5 dB .
(f) AC microvoltmeter, to measure $50 \mu \mathrm{~V}$ rms to $200 \mu \mathrm{~V}$ rms, bandwidth 20 Hz to 20 kHz .
(g) Counter/timer, to measure up to 100 kHz .
(h) Distortion factor meter, to measure less than 0.01% distortion.
(i) Low-distortion oscillator, less than 0.01% distortion at . 1 kHz .

Tests

1. Indicator lamp polarity and operation

Conditions: Connect the MRM to a power supply of appropriate AC voltage - as shown on its back panel. Short circuit both input channels. Switch the power on and suppressor in.
Check: Power and suppressor indicators are operative.
2. Transformer and loading

Instrument: DC voltmeter.
Conditions: As for Test 1.
Check: DC voltage on both main power supply capacitors (C115, C215) to be $21 \mathrm{~V} \pm 3 \mathrm{~V}$.
3. Channel balance and output

Instruments: Sinewave oscillator, oscilloscope, AC millivoltmeter.
Conditions: Switch suppressor out. Apply 1 kHz sinewave signal to input terminals in turn.
Check: \quad Channel balance must be better than $\pm 1 \mathrm{~dB}$. Maximum output before visible clipping to be greater than $7 V \mathrm{rms}$.

Diagram 14 Oscilloscope waveform - test 10

Diagram 13 Block diagram

4. RIAA frequency response

instruments: Sinewave oscillator, AC millivoltmeter.
Conditions: Switch suppressor out. Both with reference to gain at 1 kHz . Test both channels.
5. Maximum delay line dynamic range and gain balance Instruments: Sinewave oscillator, oscilloscope, AC millivoltmeter.
Conditions: Switch suppressor in. Apply 1 kHz sinewave signal to input terminais in turn. Adjust preset polentiometers (VR1, VR2) for minimum visible clipping at 2 V rms output. This will test voltage shown at the delay line output (IC4, pins 8 and 12). 1%. Channel balance at 0.3 V rms output must be $\pm 2 \mathrm{~dB}$.
Switch suppressor out and recheck.
Conditions: Switch suppressor in. Apply 50 mV rms at 20 kHz sinewave to input terminals in turn. Adjust preset potentiometers (VR1, VR2) for signal
6. Detector operation (part of)

Conditions: Switch suppressor in, set suppressor sensitivity control to maximum. indicator must not light

